ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Yasushi Seki, Isao Aoki, Shuzo Ueda, Satoshi Nishio, Ryoichi Kurihara, Takashi Tabara
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 353-357
Fusion Economics and Reactor Studies | doi.org/10.13182/FST98-A11963639
Articles are hosted by Taylor and Francis Online.
The radwaste generated from three fusion power reactors using ferritic steel, V-alloy and SiC/SiC composite were classified into low level waste (LLW) which can be disposed by shallow land burial (SLB) and medium level waste (MLW) which cannot be disposed by SLB because one or more of the radionuclides exceeds the derived limiting concentration value. When the recently developed FENDL/A2.0 library is used, the SLB fraction became 91% for ferritic steel, 36% for V-alloy and 65% for SiC/SiC. It is found that if the Nb impurity content in V-. alloy and N impurity content in SiC/SiC could be reduced to 1/100 (0.15 Wt.ppm) and 1/20 (5times10−4 Wt.%), respectively, the SLB fraction becomes nearly 100% for both materials. On the other hand, the alloying element W content needs to be reduced to further increase the SLB fraction in case of the ferritic steel F82H.