ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
Yasushi Seki, Isao Aoki, Shuzo Ueda, Satoshi Nishio, Ryoichi Kurihara, Takashi Tabara
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 353-357
Fusion Economics and Reactor Studies | doi.org/10.13182/FST98-A11963639
Articles are hosted by Taylor and Francis Online.
The radwaste generated from three fusion power reactors using ferritic steel, V-alloy and SiC/SiC composite were classified into low level waste (LLW) which can be disposed by shallow land burial (SLB) and medium level waste (MLW) which cannot be disposed by SLB because one or more of the radionuclides exceeds the derived limiting concentration value. When the recently developed FENDL/A2.0 library is used, the SLB fraction became 91% for ferritic steel, 36% for V-alloy and 65% for SiC/SiC. It is found that if the Nb impurity content in V-. alloy and N impurity content in SiC/SiC could be reduced to 1/100 (0.15 Wt.ppm) and 1/20 (5times10−4 Wt.%), respectively, the SLB fraction becomes nearly 100% for both materials. On the other hand, the alloying element W content needs to be reduced to further increase the SLB fraction in case of the ferritic steel F82H.