ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sümer Sahin, Ralph W. Moir, Abdulmuttalip ŞAHINASLAN, Haci Mehmet ŞAHIN
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1027-1035
Fusion Blanket and Shield Technology | doi.org/10.13182/FST96-A11963072
Articles are hosted by Taylor and Francis Online.
Material damage through displacements per atom (DPA) and helium gas production, as well as the tritium breeding and energy absorption in an IFE (Inertial Fusion Energy) reactor chamber have been investigated with variable coolant zone thickness using different liquids. Examples are given for HYLIFE-II (an IFE reactor design) energy conversion chambers using Flibe (Li2BeF4), natural lithium and Li17Pb83 cutectic as both coolant and wall protection. To achieve a useful energy density for energy conversion purposes with sufficient tritium breeding (TBR= 1.1), material protection (DPA < 100 and He < 500 appm in 30 years of operation) and shallow burial criteria, coolant zone thickness values are found to be 56 cm for Flibe, 160 cm for natural lithium and 170 cm for Li17Pb83 with SS-304 as structural material.
Material damage investigations are extended to structural materials made of SiC and graphite for the same blanket. DPA values and He production rates in graphite turn out to be comparable to those in SS-304. However, they are higher in SiC, as compared to SS-304 and graphite.