ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
D.J. Senor, D.J. Trimble, G.E. Youngblood, G.A. Newsome, J.L. Brimhall, J.J. Woods
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 956-968
Fusion Materials | doi.org/10.13182/FST96-A11963061
Articles are hosted by Taylor and Francis Online.
A variety of SiC-Based fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC (185 EFPD) at a nominal irradiation temperature of 1000°C. The annealed specimens were held at 1010°C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. In general, the results of this study indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon CG possessed a higher tensile strength than Hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon CG exhibited unacceptable irradiation-induced shrinkage. While the irradiation stability of Hi-Nicalon was promising, other fibers with compositions closer to stoichiometric SiC may perform even better. This potential was suggested by the MER99 fiber, which displayed excellent dimensional stability. The principal drawback for the fully crystalline and stoichiometric fibers such as MER99 and Crystalline SiC is their low strength and flexibility caused by high flaw concentrations.