ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. Ishida, T. Hayashi, M. Yamada, T. Suzuki, K. Okuno
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 926-930
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963057
Articles are hosted by Taylor and Francis Online.
In order to develop the more compact and more cost-effective tritium removal system for the fusion reactor, the new system of using gas separation membrane has been studied in Tritium Process Laboratory (TPD/Japan Atomic Energy Research Institute (JAERI). To apply the scaled polyimide membrane module (hollow filament type) to the secondary confinement system, the basic-tritium recovery performance was summarized as a module itself from N2, air, Ar mixture, and recoveral performance was well demonstrated from existing glovebox (1.4 m3 : GB). The tritium recovery performance of the membrane module was well analyzed as a cross flow model, and removal from actual GB results was well simulated by the stand-alone performance data. Using this membrane module performance, new detritiation system was designed for the secondary confinement (GB).