ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Ramakrishnan, N. Greenough, E. Fredd, S. Bernabei, C. Neumeyer
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 830-833
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963040
Articles are hosted by Taylor and Francis Online.
Lower Hybrid Current Drive (LHCD) Heating is proposed to be provided for the Tokamak Fusion Test Reactor Advanced Phase (TFTR-AP). The power to be delivered to the plasma is a total additional RF power of 3 MW (4 MW Source Power) at 4.6GHz, divided into two systems of 1.5 MW each. The first system (first phase of the job) is scheduled to be operational in April 1997 and the second system (Second phase of the job) by September 97. (The project is now on hold due to funding limitations). The Reactor is expected to operate for three more years with the additional equipment. It is proposed to utilize used equipment from the Princeton Beta Experiment (PBX) tokamak, Massachusetts Institute of Technology (MIT), and Lawrence Livermore National Laboratory (LLNL) wherever feasible. Power System equipment is also proposed to be taken on loan from LLNL for the LHCD system. The major concern in the LHCD hardware is driven by the new operating duty cycle. The PBX LHCD system was designed for operation for 500 milliseconds every 300 seconds. The system for TFTR requires operation for 3 seconds every 300 seconds. During the Conceptual Design Phase of LHCD for TFTR, the power system components for Electrical Power System were analyzed to verify whether the equipment can meet the new operational requirements with or without modifications. The Power System is composed of electrical and mechanical systems that convert 13.8 kV prime power to controlled pulsed power required for the LHCD system. The major equipment involved are Circuit Breakers, Auto and Rectifier Transformers, Surge Suppression components, Power Tetrodes, HV Decks, Klystron Amplifiers and Transmission lines. Heat runs are proposed to be conducted for the Power equipment to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the Electrical Power System components for the Lower Hybrid Current Drive