ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. Ramakrishnan, N. Greenough, E. Fredd, S. Bernabei, C. Neumeyer
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 830-833
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963040
Articles are hosted by Taylor and Francis Online.
Lower Hybrid Current Drive (LHCD) Heating is proposed to be provided for the Tokamak Fusion Test Reactor Advanced Phase (TFTR-AP). The power to be delivered to the plasma is a total additional RF power of 3 MW (4 MW Source Power) at 4.6GHz, divided into two systems of 1.5 MW each. The first system (first phase of the job) is scheduled to be operational in April 1997 and the second system (Second phase of the job) by September 97. (The project is now on hold due to funding limitations). The Reactor is expected to operate for three more years with the additional equipment. It is proposed to utilize used equipment from the Princeton Beta Experiment (PBX) tokamak, Massachusetts Institute of Technology (MIT), and Lawrence Livermore National Laboratory (LLNL) wherever feasible. Power System equipment is also proposed to be taken on loan from LLNL for the LHCD system. The major concern in the LHCD hardware is driven by the new operating duty cycle. The PBX LHCD system was designed for operation for 500 milliseconds every 300 seconds. The system for TFTR requires operation for 3 seconds every 300 seconds. During the Conceptual Design Phase of LHCD for TFTR, the power system components for Electrical Power System were analyzed to verify whether the equipment can meet the new operational requirements with or without modifications. The Power System is composed of electrical and mechanical systems that convert 13.8 kV prime power to controlled pulsed power required for the LHCD system. The major equipment involved are Circuit Breakers, Auto and Rectifier Transformers, Surge Suppression components, Power Tetrodes, HV Decks, Klystron Amplifiers and Transmission lines. Heat runs are proposed to be conducted for the Power equipment to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the Electrical Power System components for the Lower Hybrid Current Drive