ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Bernabei, C. Brunkhorst, D. Ciotti, F. Dahlgren, R. Daugert, L. Dudek, E. Fredd, N. Greenough, J. Hosea, R. Kaita, D. Loesser, M. McCarthy, E. Perry, S. Ramakrishnan, J. R. Wilson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 820-824
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963038
Articles are hosted by Taylor and Francis Online.
A TFTR Lower Hybrid Current Drive Project has been undertaken to scope out the design and the details of construction of a Lower Hybrid (LH) system to provide up to 4 megawatts of 4.6 GHz rf source power through a four-array coupler to TFTR. The main purpose of the this would be to provide TFTR with a current profile control system. The first phase of the project would consist of relocating the existing rf sources and associated equipment of the 2MW system from the PBX-M device as well as designing, fabricating and installing a vacuum vessel interface on TFTR and a new power splitter, coupler and waveguide would have to be implemented to interface with TFTR. Several novel features have been added to the system to adapt it to the requirements of the TFTR experiment. The second phase of the project would consist of installing additional 2 MW power sources from MIT and power supplies from LLNL.