ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
J.H. Rogers, T. Senko, P. LaRue, J. R. Wilson, W. Arnold, S. Martin, E. Pivit
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 815-819
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963037
Articles are hosted by Taylor and Francis Online.
A real time control system has been developed to maintain an RF impedance match in the ion cyclotron range of frequencies (ICRF). This system is designed to adjust output parameters with a cycle period of approximately 100 useconds using commercially available VME based components and a UNIX workstation host. Advanced Ferrite Technologies (AFT) has developed the hybrid tuning system (HTS) which has the capability of tracking a mismatch on the time scale of milliseconds (2.5 MW, 60 MHz) by varying the magnetic field bias of ferrite loaded transmission lines. The control algorithm uses a combination of neural network and fuzzy logic techniques. Initial results of a test facility using a low power prototype are presented.