ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masanori Araki, Satoshi Suzuki, Kazuyoshi Sato, Masato Akiba
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 674-679
Divertor Design and Experiments | doi.org/10.13182/FST96-A11963014
Articles are hosted by Taylor and Francis Online.
It is a key issue to design robust divertor modules for the International Thermonuclear Experimental Reactor (ITER). The divertor module, which consists of a cassette body with high heat flux components, has to be designed to handle not only severe particle fluxes and thermal loads from the main plasmas, but also various electromagnetic forces during the operations. In particular, the electromagnetic force induced by eddy currents during plasma disruptions is the most severe condition from engineering design point of view. Based on the ITER disruption scenarios, dynamic electromagnetic forces of the divertor module induced by the eddy currents have been analyzed. To simplify modeling, the actively cooled structure made of copper alloys was considered because of its much lower electrical resistivity compared to the other materials. In the analyses, parametric studies related to electrical connections, divertor cassette configurations and disruption scenarios, have been considered. Based on the electromagnetic force analyses, elastic stress analysis has also been performed. In particular at the vertical displacement event, analytical results show that the maximum force over 5 MN/m2 which corresponds to the elastic stress of as high as several hundreds MPa is expected in the divertor high heat flux components and that some design modifications for the mitigation of the electromagnetic force will be necessary.