ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B.M. Van Wonterghem, P.J. Wegner, J.K. Lawson, J.M. Auerbach, M.A. Henesian, C.F. Barker, C.E. Thompson, C. C. Widmayer, J.A. Caird
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 642-647
Recent Results from Inertial and Magnetic Confinement Experiments | doi.org/10.13182/FST96-A11963010
Articles are hosted by Taylor and Francis Online.
The laser driver for the National Ignition Facility will be a departure from previous inertial confinement fusion laser architecture of a master-oscillator single-pass power-amplifier (MOPA) design. The laser will use multi-segment Nd: Glass amplifiers in a multipass cavity arrangement, which can be assembled into compact and cost-effective arrays to deliver the required multi-megajoule energy to target. A single beam physics prototype, the Beamlet, has been in operation for over two years and has demonstrated the feasibility of this architecture. We present a short review of Beamlet's performance and limitations based on beam quality both at its fundamental and frequency converted wavelengths of 1.053 and 0.351 μm.