ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H.H. Streckert, K.R. Schultz, G.T. Sager, R.D. Kantncr
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 448-451
National Ignition Facility | doi.org/10.13182/FST96-A11962981
Articles are hosted by Taylor and Francis Online.
The baseline design for the target chamber and chamber components for the National Ignition Facility (NIF) consists of aluminum alloy structural material. Low activation composite chamber and components have important advantages including enhanced environmental and safety characteristics and improved accessibility due to reduced neutron-induced radioactivity. A low activation chamber can be fabricated from carbon fiber reinforced epoxy using thick wall laminate technology similar to submarine bow dome fabrication for the U.S. Navy. A risk assessment analysis indicates that a composite chamber has a reasonably high probability of success, but that an aluminum alloy chamber represents a lower risk. Use of low activation composite materials for several chamber components such as the final optics assemblies, the target positioner and inserter, the diagnostics manipulator tubes, and the optics beam tubes would offer an opportunity to make significant reductions in post-shot radiation dose rate with smaller, less immediate impact on the NIF design.