ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC issues Palisades’ final environmental assessment of no significant findings
The Palisades nulear power plant received a final “clean bill” of environmental assessment impact from the Nuclear Regulatory Commission today.
The NRC’s staff EA and conclusion of no significant environmental impact for the Covert, Mich., plant, which plans to restart after operations were halted three years ago this month due to economic hardships in the energy market.
Makoto Katsurai
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 97-103
Overview Paper | doi.org/10.13182/FST95-A11947052
Articles are hosted by Taylor and Francis Online.
The TS-3 device at the University of Tokyo has been used to produce tree boundary spheromaks or spheromak-like compact toroids. Plasma production is accomplished either by Z-θ discharges or by means of magnetized coaxial plasma guns installed at both ends of the device. The plasmas produced have a minor=major radius of about 15 to 20 cm with a natural decay time of about 30 to 50 μs and a toroidal plasma current of about 30 to 60 kA. A unique feature of TS-3 device is the possession of production regions at both ends of the device, and concequently the ability of producing two adjacent compact toroids which can be merged through magnetic reconnection. Another feature of TS-3 device is the possibility of external application of a toroidal field with the aid of an optional center conductor assembly that can carry an axial current ranging from 0 to ±80 kA. This construction enables us to produce compact toroidal plasmas of various types from reversed field pinch(RFP) to tokamak in terms of the difference in q profile. The variation of both poloidal plasma current and external toroidal field current permits the change in magnetic configuration of merging plasmas, enabling the reconnection angle to continuously vary from about 20° (tokamak merging) through 90° (cohelicity spheromak merging) to 180° (counter-helicity spheromak merging to produce field reversed configurations(FRC)). When the coaxial guns are installed at both ends of the device in place of the center conductor, a center plasma current can be injected to form flux-core spheromaks (or bumpy z-pinches). Novel research subjects that have emerged from TS-3 experiments are; (1) the investigation of three dimensional effects of magnetic reconnection in laboratory plasmas. (2) the formation of FRC plasmas by a counter-helicity spheromak merging, (3) non-OH production and merging of tight aspect ratio tokamaks, (4) the stabilization of tilt motions of tight aspect ratio tokamaks, and (5) the formation and compression (flux amplification) of free-boundary tilt stabilized flux-core spheromaks.