ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Industry Update—June 2025
Here is a recap of industry happenings from the recent past:
DOD selects companies for its installations microreactor program
The Department of Defense has selected eight technology companies as being eligible to seek funding for developing microreactor technologies as part of the DOD’s Advanced Nuclear Power for Installations program. That program seeks to “design, license, build, and operate one or more microreactor nuclear power plants on military installations . . . to support global operations across land, air, sea, space, and cyberspace.” The selected companies are Antares Nuclear, BWXT Advanced Technologies, General Atomics Electromagnetic Systems, Kairos Power, Oklo, Radiant Industries, Westinghouse Government Services, and X-energy. Specific objectives of the DOD program are to “field a decentralized scalable microreactor system capable of producing enough electrical power to meet 100 percent of all critical loads” and to “utilize the civil regulatory pathways of the Nuclear Regulatory Commission to stimulate commercial nuclear microreactor technology development and the associated supply chains in the U.S.”
N. Venkataramani, F. Ghezzi, G. Bonizzoni
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 62-68
doi.org/10.13182/FST95-A11963806
Articles are hosted by Taylor and Francis Online.
This paper addresses an important consideration in the application of a Zirconium based alloy reactor bed for tritiated water handling, namely the nature and extent of variation of the water vapour conversion rate of alloy during its use. Experimental results obtained from four different investigations are presented to summarily view the water vapour reduction behaviour and hydrogen isotope release by the alloy during the conversion. The ternary getter alloy -[Zr(V0.5Fe0.5)2], commercially known as St 737 (SAES Getters), is found to have good sorption properties for water vapour even at moderate temperatures (400 °C and less), and attractive sorption – desorption characteristics for hydrogen over a large and convenient working pressure range (up to ≈ 4 kPa). The four different conversion experiments performed, namely, (i) by “Fill” method, where the interaction occurred between a defined water vapour quantity and the getter alloy in the absence of any flow; (ii) under continuous water vapour “Flow” conditions; (iii) by subjecting the alloy to high concentrations of oxygen up-take (“Poisoning”) under water vapour flow conditions, with periodic regeneration; and (iv) over nearly the “Full Usage” of alloy where both the conversion and interposed relaxation durations extended up to a few thousand hours, showed that the functional characteristics of the Zr-V-Fe alloy are relevant to “batch” as well as “continuous” handling modes of a reactor operation.