ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
M. Piera, J.M. Martínez-Val, J.M. Perlado
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 964-968
Fusion-Fission Hybrids | doi.org/10.13182/FST91-A11946968
Articles are hosted by Taylor and Francis Online.
The neutronic performance of a hybrid in analysed on the basis of a set of lumped parameters which properly characterize the main features of the hybrid, as energy multiplication or fissile breeding. This analysis enables one to identify the parametric ranges or design windows where a specific hybrid objective can be met. It is shown that fissile fuel production to feed fission reactors requires a set of parameters totally different from that of an energy amplifier hybrid. The latter can be designed to maintain a high factor of energy multiplication for very long burnups. The former reaches the maximum capability to feed fission reactors in the limit of fission-suppressed hybrids, which requires the fertile capture cross section to be as high as possible as compared to the fissile fission cross section. Upper limits of the magnitudes characterizing the neutronic performance are identified.