ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. K. Dickens, J. W. McConnell, K. M. Chase, H. W. Hendel, E. B. Nieschmidt, Francis Y. Tsang
Fusion Science and Technology | Volume 12 | Number 2 | September 1987 | Pages 270-280
Shielding | doi.org/10.13182/FST87-A11963785
Articles are hosted by Taylor and Francis Online.
Spectral distributions of high-energy neutrons (0.9 ≤ En ≤ 14.5 MeV) and of high-energy gamma rays (0.4 ≤ Eγ ≤ 9.4 MeV) due to a deuterium-tritium (D-T) neutron point source simulating the extended fusion plasma neutron source in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory are reported. A D-T neutron generator was positioned inside the vacuum vessel at ten different locations around the torus. Neutrons and gamma rays were detected by a liquid-scintillator-based detector (4.65-cm diam × 4.22 cm high) with electronic pulse-shape discrimination to differentiate between events in the detector due to incident neutrons and those due to incident gamma rays. The detector was placed on the median plane of the reactor at 8.85 m from the geometric center of the TFTR. Two spectral distributions, one for neutrons and the other for gamma rays, were obtained for each of 18 measurements. The neutron data exhibit a high-energy peak dominated by uncollided primary-energy neutrons and a low-energy contribution from the scattered neutrons. The gamma-ray data exhibit a high-energy contribution due to neutron capture gamma rays and a low-energy contribution due to gamma rays following neutron inelastic scattering reactions.