ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J. K. Dickens, J. W. McConnell, K. M. Chase, H. W. Hendel, E. B. Nieschmidt, Francis Y. Tsang
Fusion Science and Technology | Volume 12 | Number 2 | September 1987 | Pages 270-280
Shielding | doi.org/10.13182/FST87-A11963785
Articles are hosted by Taylor and Francis Online.
Spectral distributions of high-energy neutrons (0.9 ≤ En ≤ 14.5 MeV) and of high-energy gamma rays (0.4 ≤ Eγ ≤ 9.4 MeV) due to a deuterium-tritium (D-T) neutron point source simulating the extended fusion plasma neutron source in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory are reported. A D-T neutron generator was positioned inside the vacuum vessel at ten different locations around the torus. Neutrons and gamma rays were detected by a liquid-scintillator-based detector (4.65-cm diam × 4.22 cm high) with electronic pulse-shape discrimination to differentiate between events in the detector due to incident neutrons and those due to incident gamma rays. The detector was placed on the median plane of the reactor at 8.85 m from the geometric center of the TFTR. Two spectral distributions, one for neutrons and the other for gamma rays, were obtained for each of 18 measurements. The neutron data exhibit a high-energy peak dominated by uncollided primary-energy neutrons and a low-energy contribution from the scattered neutrons. The gamma-ray data exhibit a high-energy contribution due to neutron capture gamma rays and a low-energy contribution due to gamma rays following neutron inelastic scattering reactions.