ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. K. Dickens, J. W. McConnell, K. M. Chase, H. W. Hendel, E. B. Nieschmidt, Francis Y. Tsang
Fusion Science and Technology | Volume 12 | Number 2 | September 1987 | Pages 270-280
Shielding | doi.org/10.13182/FST87-A11963785
Articles are hosted by Taylor and Francis Online.
Spectral distributions of high-energy neutrons (0.9 ≤ En ≤ 14.5 MeV) and of high-energy gamma rays (0.4 ≤ Eγ ≤ 9.4 MeV) due to a deuterium-tritium (D-T) neutron point source simulating the extended fusion plasma neutron source in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory are reported. A D-T neutron generator was positioned inside the vacuum vessel at ten different locations around the torus. Neutrons and gamma rays were detected by a liquid-scintillator-based detector (4.65-cm diam × 4.22 cm high) with electronic pulse-shape discrimination to differentiate between events in the detector due to incident neutrons and those due to incident gamma rays. The detector was placed on the median plane of the reactor at 8.85 m from the geometric center of the TFTR. Two spectral distributions, one for neutrons and the other for gamma rays, were obtained for each of 18 measurements. The neutron data exhibit a high-energy peak dominated by uncollided primary-energy neutrons and a low-energy contribution from the scattered neutrons. The gamma-ray data exhibit a high-energy contribution due to neutron capture gamma rays and a low-energy contribution due to gamma rays following neutron inelastic scattering reactions.