ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Phongsan Meekunnasombat, Mark H. Anderson, Michael L. Corradini
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 803-810
Technical Paper | doi.org/10.13182/FST03-A417
Articles are hosted by Taylor and Francis Online.
The SnxLiy and PbxLiy, alloys are being considered as liquid breeding materials for fusion reactor applications. Thus, it is important to understand the safety implications associated with inadvertent contact with water used in an indirect cycle. In an effort to study this interaction, experiments have been conducted with these molten alloys when impacted with a vertical 2.4-m-tall column of water at 30 and 60°C. The qualitative behavior of Sn75Li25 was compared under similar conditions with other candidate molten metals, specifically tin, lead, and a lead-lithium alloy, Pb83Li17. Multiple pressure spikes were produced with Sn and Pb, while essentially only one initial pressurization followed by a few strongly damped minor peaks was observed with the different alloys containing lithium. Results with tin-lithium are quite similar to pure tin and lead behavior. Dynamic pressure traces from the physical and chemical reactions are discussed and used to compare the energetics associated with the two different alloys. The pressure traces were used to calculate experimental impulses, which represent the energetics of the reactions. The impulse ratio of the experimental and the theoretical values increased in the tests of alloys containing lithium. (Hydrogen production from lithium-water reactions was quite rapid and copious.) In contrast, hydrogen production with tin-lithium was modest and quite similar to the lead-lithium alloy. It was found that the metal-water interactions of Pb83Li17 and Sn75Li25 are quite similar and have significantly reduced energetics from those of pure lithium and other reactive metals being considered.