ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Tristan T. Utschig, Michael L. Corradini
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 791-802
Technical Paper | doi.org/10.13182/FST03-A416
Articles are hosted by Taylor and Francis Online.
Pulsed power experiments for basic physics investigations as well as inertial confinement fusion designs have developed Z-pinch technologies that produce terawatt level power using multiwire arrays. The energy released from such pulsed power tests results in fragmentation and vaporization of structures at the central wire array as well as shock wave propagation to the chamber boundaries. Practical design and safety considerations require that tracking of this shock front and the associated gas-debris field be done for a variety of experimental configurations to predict the arrival time of hazardous or radioactive debris at fast closure valve locations. A novel computational model has been developed to handle gas expansion into vacuum using a computer model (TEXAS) operating on a Eulerian mesh. Upon expansion of a high-pressure gas into a region of hard vacuum where free molecular transport dominates, the transport model switches between a traditional Eulerian continuum mechanics model and a free molecular transport model across the interface between the two regions. The interface location then propagates along the mesh as the gas expands. This new quasi-one-dimensional model (TEXAS-NCV) has been implemented and tested for two benchmark cases. Such a model can be useful in the design of inertial fusion systems.