ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Gregg A. Morgan, Brittany J. Hodge, Anita S. Poore
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 426-433
Technical Paper | doi.org/10.1080/15361055.2017.1333858
Articles are hosted by Taylor and Francis Online.
A prototype Pd-Ag diffuser manufactured by Power and Energy was evaluated for performance characterization testing at the Savannah River National Laboratory (SRNL). The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump type and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.
For the 96% H2/4% N2 mixtures, nearly all of the H2 permeated through the membrane at flow rates up to 3000 sccm. However, results for the 50% H2/50% N2 composition show that 100% permeation is only achieved up to a flow rate of 1000 sccm. A significant reduction in the hydrogen permeation was observed for the 2% H2/98% N2 composition. This Pd-Ag diffuser design is not suitable for a tritium purification system within the fusion energy fuel cycle. Typical tritium purification systems can be expected to see a range of hydrogen isotope concentrations and this particular prototype diffuser is only suitable for process streams containing high concentrations of hydrogen isotopes.
Significant efforts should be undertaken to identify additional commercial vendors for Pd-Ag diffusers. It is of critical importance to identify, procure, and test different Pd-Ag designs that can perform well over a range of hydrogen isotope concentrations for tritium gas processing applications.