ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Toshihiko Yamanishi, Norikiyo Koizumi, Masataka Nakahira, Yoshihiko Nunoya, Satoshi Suzuki, Hiroyuki Tobari, Mieko Kashiwagi, Takaaki Isono, Takashi Inoue, Makoto Sugimoto, Yoshinori Kusama, Yoshinori Kawamura, Hiroyasu Tanigawa, Masaru Nakamichi, Takashi Nozawa, Tsuyoshi Hoshino, Yoshio Ueda, Yuji Hatano, Takeo Muroga, Satoshi Fukada
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 233-241
Technical Paper | doi.org/10.1080/15361055.2017.1330625
Articles are hosted by Taylor and Francis Online.
Several key components, such as superconducting coils, remote handling equipment, heating systems, have been designed and manufactured by JADA (Japan Domestic Agency). These activities have been carried out in accordance with the agreed schedule; in collaboration with the ITER organization and other domestic agencies. As a significant technical program using ITER, to design and to manufacture the TBS (Test blanket system), some R&D and design activities have also been conducted in Japan. Under the IFERC (the International Fusion Energy Research Center) projects of BA (Broader Approach) activities, design and R&D activities on fusion DEMO reactor have been carried out. For the DEMO R&D activity, five basic R&D subjects for a DEMO blanket system have been selected, and been studies under close collaborations between EU and JA: structure materials (RAFM steels and SiC/SiC composites), functional materials (tritium breeders and neutron multipliers), and tritium technology. From 2007, the above projects produced a set of fruitful results. A series of advanced technologies for the DEMO blanket system has also been carried out by Universities in Japan. Some significant basic R&D studies have also been carried out under US-JA collaborative program.