ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
F. Albajar, M. Bornatici, F. Engelmann, A. B. Kukushkin
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 76-83
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4055
Articles are hosted by Taylor and Francis Online.
The codes SNECTR, CYTRAN, CYNEQ, and EXACTEC are compared in view of the calculation of the profile of the net electron cyclotron (EC) wave power density emitted for different electron temperature profiles and average temperatures of relevance for reactor-grade magnetoplasmas. The effects of either specularly or diffusely reflecting walls are assessed for a cylindrical plasma with circular cross-section, specular reflection, as assumed in EXACTEC, providing a lower bound to the net EC wave power losses in the hot plasma core (and therefore, as a rule, also to the total EC power loss) as well as to reabsorption in the edge plasma. The assumption of isotropy of the radiation intensity in the plasma that is adopted in both CYTRAN and CYNEQ (which cannot be justified a priori) is discussed and found to be adequate for strong diffuse reflection. However, it overestimates the net EC power loss in the plasma core for weakly as well as for specularly reflecting walls by up to 20%. The full transport code SNECTR (no longer in active use), for specular reflection, and the exact cylindrical code EXACTEC are in excellent agreement with each other while for strong diffuse reflection EXACTEC is found to underestimate the net EC power loss typically by 20%. EXACTEC, CYTRAN, and CYNEQ are confirmed to be well suited for use in systematic transport simulations of fusion plasmas.