ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
F. Albajar, M. Bornatici, F. Engelmann, A. B. Kukushkin
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 76-83
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4055
Articles are hosted by Taylor and Francis Online.
The codes SNECTR, CYTRAN, CYNEQ, and EXACTEC are compared in view of the calculation of the profile of the net electron cyclotron (EC) wave power density emitted for different electron temperature profiles and average temperatures of relevance for reactor-grade magnetoplasmas. The effects of either specularly or diffusely reflecting walls are assessed for a cylindrical plasma with circular cross-section, specular reflection, as assumed in EXACTEC, providing a lower bound to the net EC wave power losses in the hot plasma core (and therefore, as a rule, also to the total EC power loss) as well as to reabsorption in the edge plasma. The assumption of isotropy of the radiation intensity in the plasma that is adopted in both CYTRAN and CYNEQ (which cannot be justified a priori) is discussed and found to be adequate for strong diffuse reflection. However, it overestimates the net EC power loss in the plasma core for weakly as well as for specularly reflecting walls by up to 20%. The full transport code SNECTR (no longer in active use), for specular reflection, and the exact cylindrical code EXACTEC are in excellent agreement with each other while for strong diffuse reflection EXACTEC is found to underestimate the net EC power loss typically by 20%. EXACTEC, CYTRAN, and CYNEQ are confirmed to be well suited for use in systematic transport simulations of fusion plasmas.