ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
A. E. Costley
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 1-15
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4048
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) has been of interest in fusion research since the beginning, in the late 1950s, of the worldwide effort to realize fusion energy. The initial interest was in its contribution to the power loss, which under some conditions was predicted to be a possible impediment to achieving net power generation from fusion. The current interest centers on the use of measurements of the emission as a powerful means of determining the value of some of the main parameters of the plasma: Most modern tokamaks and stellarators are equipped with extensive ECE measurement systems. Creativity, surprises, debate, careful experimentation, and solid theoretical work characterize the path in between, which has not always been smooth but through the diagnostic applications has ultimately been very successful. In this paper, we trace that path by identifying and illustrating the main developments. We also take a brief look forward. The transport of energy due to ECE is expected to play a significant role in the burn dynamics of fusion plasmas, and this role is outlined. Measurements of ECE are expected to play an important role in the diagnosis of future fusion machines, like ITER, that will achieve thermonuclear conditions. There are significant benefits and challenges associated with making measurements of ECE on such plasmas, and these are briefly summarized.