ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Stephen T. Lam, John Stempien, Ronald Ballinger, Charles Forsberg
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 644-648
Technical Note | doi.org/10.1080/15361055.2017.1290945
Articles are hosted by Taylor and Francis Online.
Research characterizing hydrogen behavior on carbon has been primarily focused on collecting data at near-ambient temperatures and pressures for storage or for high volume applications such as fusion. Transport models of a pre-conceptual 236 MWt pebble-bed fluoride-salt-cooled, high-temperature reactor (PB-FHR) estimate that the production of tritium is relatively low resulting in partial pressures ranging between 0 and 20 Pa. Operating temperatures in an FHR range from 600 to 700°C. Under these operating conditions, the interaction between hydrogen and carbon is currently undefined. Since an FHR contains large quantities of carbon (reflectors, fuel, structures), the tritium behavior in carbon must be investigated in order to develop methods to control tritium release rates to the environment and material corrosion. Preliminary modeling and experiments demonstrate high performance is achieved in a carbon adsorption tower, which can reduce system release rates by greater than 99%. This research aims to (1) accurately measure hydrogen uptake and kinetics on different types of carbon at prototypic conditions and (2) use tritium transport modeling to demonstrate the potential of carbon materials for tritium capture and control.