ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Jennifer Lyons, Edward Love, Kim Burns
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 616-621
Technical Note | doi.org/10.1080/15361055.2017.1290944
Articles are hosted by Taylor and Francis Online.
TEACUP (Tritium Effluent Analysis and Core-follow, Up-to-date and Predictive) is a tritium management and supplemental core follow program that allows its users to account for reactor coolant system (RCS) tritium sources, generate discharge release estimates, account for downstream river flows and concentrations, and calculate corresponding uncertainties. The program incorporates water balance methodologies, tritium production estimates from secondary startup neutron sources, soluble boron content, reactor coolant system tritium measurements, and seasonal river flow estimates. TEACUP was designed specifically to facilitate the tracking of Tritium Producing Burnable Absorber Rod (TPBAR) permeation since measuring in-reactor permeation directly is not feasible and prediction methodologies have thus far been insufficient. A number of models, calculations, and correlations were developed in order to quantify all of the leading sources and losses of tritium in the RCS. By comparing all of the known contributors and discharges from the RCS tritium inventory to the measured RCS tritium concentration, the unaccounted for balance (within some band of uncertainty) can be attributed to TPBAR permeation. The tritium release estimates to the river generated from TEACUP are validated by comparing them to the measured tritium releases which match well and give confidence that TEACUP is tracking and accounting for tritium appropriately. An additional check on the methodologies within TEACUP is that the cycle-to-cycle trends for tritium permeation per TPBAR are consistent in behavior and the estimated release per TPBAR across each cycle is the same within their uncertainty.