ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Jennifer Lyons, Edward Love, Kim Burns
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 616-621
Technical Note | doi.org/10.1080/15361055.2017.1290944
Articles are hosted by Taylor and Francis Online.
TEACUP (Tritium Effluent Analysis and Core-follow, Up-to-date and Predictive) is a tritium management and supplemental core follow program that allows its users to account for reactor coolant system (RCS) tritium sources, generate discharge release estimates, account for downstream river flows and concentrations, and calculate corresponding uncertainties. The program incorporates water balance methodologies, tritium production estimates from secondary startup neutron sources, soluble boron content, reactor coolant system tritium measurements, and seasonal river flow estimates. TEACUP was designed specifically to facilitate the tracking of Tritium Producing Burnable Absorber Rod (TPBAR) permeation since measuring in-reactor permeation directly is not feasible and prediction methodologies have thus far been insufficient. A number of models, calculations, and correlations were developed in order to quantify all of the leading sources and losses of tritium in the RCS. By comparing all of the known contributors and discharges from the RCS tritium inventory to the measured RCS tritium concentration, the unaccounted for balance (within some band of uncertainty) can be attributed to TPBAR permeation. The tritium release estimates to the river generated from TEACUP are validated by comparing them to the measured tritium releases which match well and give confidence that TEACUP is tracking and accounting for tritium appropriately. An additional check on the methodologies within TEACUP is that the cycle-to-cycle trends for tritium permeation per TPBAR are consistent in behavior and the estimated release per TPBAR across each cycle is the same within their uncertainty.