ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Fumito Okino, Laetitia Frances, David Demange, Ryuta Kasada, Satoshi Konishi
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 575-583
Technical Note | doi.org/10.1080/15361055.2017.1290972
Articles are hosted by Taylor and Francis Online.
Quantitative feasibility analysis of the tritium recovery efficiency from multiple columns of liquid PbLi droplets was conducted. Then a case study based on the HCLL specification was performed. Main concern was whether the experimentally obtained recovery efficiency from a column of droplets is applicable for the efficiency estimation from the multiple columns of droplets without any mutual degrading effects. To maintaining a safe side assumption, the tritium once released and reabsorbed on another droplet was considered to be not re-emitted while falling. By the analogy with the thermal radiation theory, the view factor which expresses the intersection ratio of radiation on another surface was applied for the estimation. The dependences on nozzle design parameters, such as nozzle pitch, number of nozzles, chamber wall clearance, and exhaust port design, were investigated. Case study results suggest that, by choosing well-suited parameters approximately 40% to 60% of the single column recovery efficiency was secured for multiple columns even on the conservative condition. The release chamber exhaust port design had a major influence. Nozzle pitch and array design have less influences, but are not negligible. However, it has to be experimentally verified to the scale-size effects and experimental programs are currently underway.