ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
M. Kinjo, S. Fukada, K. Katayama, Y. Edao, T. Hayashi
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 520-526
Technical Paper | doi.org/10.1080/15361055.2017.1293426
Articles are hosted by Taylor and Francis Online.
Recovery of hydrogen dissolved in Li-Pb eutectic alloy by mean of a bubbling tower is experimentally investigated. Mass-transfer coefficients to predict tritium recovery rate are experimentally determined when Ar and Ar+H2 gas bubbles are injected into Li-Pb through an I-shaped nozzle under the conditions of temperature 573–773 K and H2 partial pressure of 1 Pa–0.1 MPa. The results are fitted by an analytical equation based on diffusion and solution in Li-Pb. So that, the rate-determining step is hydrogen diffusion through a boundary layer formed in Li-Pb-gas interface and absorption and desorption are found to be almost reversible.