ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Commonwealth Fusion Systems partners with Google DeepMind
Google DeepMind—Google’s artificial intelligence development subsidiary—recently announced a new partnership with fusion start-up Commonwealth Fusion Systems. The goal of this collaboration is to leverage AI to both advance plasma simulation and discover novel control strategies, ultimately accelerating CFS’s timeline to deliver commercial fusion to the grid.
Y. Yamasaki, S. Fukada, K. Hiyane, K. Katayama
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 501-506
Technical Paper | doi.org/10.1080/15361055.2017.1291028
Articles are hosted by Taylor and Francis Online.
In order to make proof of the recovery of hydrogen isotopes from a liquid lithium (Li) blanket, we experimented the recovery of deuterium (D) dissolved in Li by means of yttrium (Y) metal at 300°C. In the experiment, 160 wppm D dissolved in Li was removed down to 1 wppm by means of the Y trap maintained at 300°C under fluidized Li conditions. The ratio of the final-state D concentration dissolved in Li to the initial one is defined as a removal efficiency, and the removal efficiency was found to be in proportion to the D concentration remained in Li. In addition, judging from its dependence on D concentration remained in Li, it was found that the removal efficiency is well consistent with the secondary-order reaction process and the removal efficiency was correlated to a function of contact time.