ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Y. Yamasaki, S. Fukada, K. Hiyane, K. Katayama
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 501-506
Technical Paper | doi.org/10.1080/15361055.2017.1291028
Articles are hosted by Taylor and Francis Online.
In order to make proof of the recovery of hydrogen isotopes from a liquid lithium (Li) blanket, we experimented the recovery of deuterium (D) dissolved in Li by means of yttrium (Y) metal at 300°C. In the experiment, 160 wppm D dissolved in Li was removed down to 1 wppm by means of the Y trap maintained at 300°C under fluidized Li conditions. The ratio of the final-state D concentration dissolved in Li to the initial one is defined as a removal efficiency, and the removal efficiency was found to be in proportion to the D concentration remained in Li. In addition, judging from its dependence on D concentration remained in Li, it was found that the removal efficiency is well consistent with the secondary-order reaction process and the removal efficiency was correlated to a function of contact time.