ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
Masanori Hara, Haruna Sakaguchi, Masato Nakayama, Shinsuke Abe, Masao Matsuyama, Takayuki Abe, Tsukasa Aso
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 496-500
Technical Paper | doi.org/10.1080/15361055.2016.1273708
Articles are hosted by Taylor and Francis Online.
The luminescence of Eu(DPA)33- induced by beta particles from tritium decay was measured. The solution of Eu3+ was prepared with europium(III) nitrate hexahydrate and was mixed with a DPA (2, 6-pyridinedicarboxylic acid or dipicolinic acid) solution of pH 11 to yield Eu(DPA)33-. The formation of Eu(DPA)33- was confirmed through spectrometry. Tritiated water was added to the prepared solution of Eu(DPA)33-. The luminescence intensity is proportional to the amount of tritium. In this paper we demonstrate the potential of this Eu complex as an inorganic liquid scintillator.