ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Kazunari Katayama, Satoshi Fukada
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 426-431
Technical Note | doi.org/10.1080/15361055.2017.1293412
Articles are hosted by Taylor and Francis Online.
With the aim of developing a method for the recovery of tritium from tritium-bearing hydrocarbons, it was shown experimentally that methane can be decomposed directly into hydrogen and carbon in RF plasmas via reactions initiated by electrons. Measurements performed with CH4 and CH3T in a helium RF plasma indicate that the degree of decomposition of CH3T is substantially smaller than that of CH4. This is considered to be caused by a very low concentration of CH3T. It was found that a majority of tritium dissociated from CH3T is retained in the plasma reactor. However, a certain amount of retained tritium could be removed by a discharge-cleaning of oxygen.