ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kazunari Katayama, Satoshi Fukada
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 426-431
Technical Note | doi.org/10.1080/15361055.2017.1293412
Articles are hosted by Taylor and Francis Online.
With the aim of developing a method for the recovery of tritium from tritium-bearing hydrocarbons, it was shown experimentally that methane can be decomposed directly into hydrogen and carbon in RF plasmas via reactions initiated by electrons. Measurements performed with CH4 and CH3T in a helium RF plasma indicate that the degree of decomposition of CH3T is substantially smaller than that of CH4. This is considered to be caused by a very low concentration of CH3T. It was found that a majority of tritium dissociated from CH3T is retained in the plasma reactor. However, a certain amount of retained tritium could be removed by a discharge-cleaning of oxygen.