ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Sebastian Mirz, Uwe Besserer, Beate Bornschein, Robin Größle, Bennet Krasch, Stefan Welte
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 375-380
Technical Paper | doi.org/10.1080/15361055.2016.1273706
Articles are hosted by Taylor and Francis Online.
An integral part of the fuel cycle of future fusion facilities is the isotope separation system (ISS). The Tritium Laboratory Karlsruhe (TLK) is currently developing a system to monitor the concentration of all six hydrogen isotopologues Q2 (H2, HD, D2, HT, DT, T2) in the liquid phase in the cryogenic distillation process of the ISS.
Liquid inactive Q2 were already successfully analyzed under cryogenic conditions via infrared (IR) absorption spectroscopy and calibration data for D2 is provided by previous experiments at TLK. The new experiment T2ApIR (Tritium Absorption Infrared Spectroscopy Experiment) is designed to be fully tritium compatible to perform a complete calibration of the IR absorption measurement system with all six hydrogen isotopologues in the liquid phase under conditions similar to the ISS. This provides a unique non-invasive, inline and real-time measurement system for isotopologic concentration determination, ready for implementation in the cryogenic distillation column.