ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Sebastian Mirz, Uwe Besserer, Beate Bornschein, Robin Größle, Bennet Krasch, Stefan Welte
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 375-380
Technical Paper | doi.org/10.1080/15361055.2016.1273706
Articles are hosted by Taylor and Francis Online.
An integral part of the fuel cycle of future fusion facilities is the isotope separation system (ISS). The Tritium Laboratory Karlsruhe (TLK) is currently developing a system to monitor the concentration of all six hydrogen isotopologues Q2 (H2, HD, D2, HT, DT, T2) in the liquid phase in the cryogenic distillation process of the ISS.
Liquid inactive Q2 were already successfully analyzed under cryogenic conditions via infrared (IR) absorption spectroscopy and calibration data for D2 is provided by previous experiments at TLK. The new experiment T2ApIR (Tritium Absorption Infrared Spectroscopy Experiment) is designed to be fully tritium compatible to perform a complete calibration of the IR absorption measurement system with all six hydrogen isotopologues in the liquid phase under conditions similar to the ISS. This provides a unique non-invasive, inline and real-time measurement system for isotopologic concentration determination, ready for implementation in the cryogenic distillation column.