ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 275-280
Technical Paper | doi.org/10.1080/15361055.2017.1293456
Articles are hosted by Taylor and Francis Online.
The concentration of tritium in the adsorbed water layer on stainless-steel type 316 is notably higher than that present in the metal lattice. The absorbed waters play a key role in the migration of tritium into the metal. In this work, stainless-steel (type 316) surfaces were subjected to various pretreatments designed to alter the surface in order to probe the relation between surface conditions and total tritium inventories. These pretreatments included electropolishing and soaking in nitric-acid baths. Stainless-steel samples were loaded with tritium by exposure to a deuterium–tritium gas mixture at 25°C for 24 h. Total tritium inventories were measured using temperature-programmed desorption. The thermal desorption data show a reduction of 65% in total tritium inventory by electropolishing stainless-steel surfaces as compared to unmodified samples. It is also shown that treating the surfaces with nitric acid resulted in an increase in the tritium content by ~200%.