ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. E. Sawan, I. N. Sviatoslavsky
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 1141-1145
Fusion Power Reactor, Economic, and Alternate Concept | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40307
Articles are hosted by Taylor and Francis Online.
The neutron yield in a D-3He reactor is much lower than that in a D-T reactor of equivalent power. Therefore, the rate of neutron damage and gas production in the first wall of D-3He reactors is lower by more than an order of magnitude. Whereas different structural materials proposed for use in commercial fusion reactors will last the reactor lifetime of 30 full power years in a D-3He reactor, frequent replacement of the first wall and blanket will be required during the lifetime of a D-T power reactor. The blanket modules may require 30 replacements depending on the material used and the maximum allowable damage level. The down time required for replacement of the first wall and blanket in a D-T reactor will impact the reactor availability and consequently the cost of electricity. It appears that a D-3He reactor should have a 10% advantage in availability over a D-T reactor.