ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A C Bell, the JET Team
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 1043-1050
Tritium Technology, Safety, Environment, and Remote Maintenance | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40293
Articles are hosted by Taylor and Francis Online.
D-T plasma operation has always been envisaged since the beginning of the JET Project and both the original design and subsequent modifications have been designed to take account of the requirements of D-T operation. A limited tritium experiment was carried out in November 1991 which generated 1.7MW of fusion power. In addition to the physics objectives, this experiment was intended to provide results which would be important for the technology to be used in full D-T phase, such as tritium accounting and hold-up. Because of the limited usage of tritium it was possible to use a “once-through” system in which around 99% of the tritium was recovered. It is currently planned to have a daily throughput of around 10g of tritium per day in the full D-T phase, introduced through neutral beam and/or gas puffing. As it would be neither environmentally acceptable nor cost-effective to discharge even 1% of this to the atmosphere, a tritium recycling plant, known as the Active Gas Handling System (AGHS) has been constructed and is currently being commissioned. It was necessary to take several issues into consideration in the design of the AGHS to ensure that it and the JET machine would be capable of being licensed for handling tritium. These were ensuring that “Best Practicable Means” were used to limit routine discharges to the environment; ensuring that routine radiation exposure of the JET workforce would be minimised; and ensuring that the risk to the workforce and the public arising from accidents would be acceptably low. The technology involved, waste management and regulatory issues are discussed further in the paper.