ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Illinois lifts moratorium on new large nuclear reactors
New power reactors of any size can be now be sited in the state of Illinois, thanks to legislation signed by Gov. J. B. Pritzker on January 8. The Clean and Reliable Grid Affordability Act (CRGA)—which Pritzker says is designed to lower energy costs for consumers, drive the development of new energy resources in the state, and strengthen the grid—lifts the moratorium on new, large nuclear reactors that Illinois enacted in the late 1980s.
C. E. Annese, E. Greenspan
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 958-962
Fusion Diagnostic and Neutronic Experiment and Analysis | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40278
Articles are hosted by Taylor and Francis Online.
The computer time saving attainable by solving the transport equation for the higher neutron energy groups and the diffusion equation for the lower energy groups was investigated for fusion reactor safety applications. For the ARIES-I design considered, it was found that coupled diffusion-transport solutions can provide the activation rates in all the zones excluding the shield to within 2.5 % and 5 % when the transition to the diffusion approximation is, respectively, at 1.4 MeV and 8.8 MeV. The corresponding saving in CPU time relative to an all-transport solution is 31 % and 43 %. For the low order transport approximation used, this CPU time is significantly shorter than that required by ONEDANT, with its built-in diffusion synthetic acceleration.