ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Lawrence Green, Joe Lance, John Rathke, Michael Reusch, Alan Todd, David Bruhwiler, Ed Piechowiak, Jerry Bazinet, Scott Thomson
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 949-957
Fusion Diagnostic and Neutronic Experiment and Analysis | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40277
Articles are hosted by Taylor and Francis Online.
A scoping design study was performed for a Fusion Materials Irradiation Facility (FMIF). This work summarizes the industry contribution to the national effort. Other organizations involved have included the DOE and national laboratories, as well as the industrial partners. The objective of this work was to obtain a general facility layout incorporating advances in accelerator technology and beam optics design and control since FMIT, and an associated scoping cost estimate. The baseline design has two beamlines each delivering 125 mA of 35 MeV deuterons onto one of two flowing liquid lithium targets. The system has been designed for a future upgrade to four beamlines delivering up to a total of 500 mA on target. This system can provide an equivalent 14 MeV neutron flux of 2 MW/m2 in a volume greater than one liter at a flux gradient of less than 10% per centimeter.