ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 906-911
Inertial Confinement Fusion Reactor, Reactor Target, and Driver | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40269
Articles are hosted by Taylor and Francis Online.
Gas dynamics in an inertial confinement fusion reactor involves extremely high energy and temperatures. In those temperature range, gaseous radiation can be critical to the dynamics phenomenon. This study presents a method that couples an one-dimensional radiation transfer model with an Eulerian gas dynamics code for HYLIFE-II studies. The results reveals that radiation modifies the shock interaction pattern drastically. Although there are more sophisticated methods of computing one-dimensional radiation transport than the model implemented in current study, the methodology used here are extendible to two-dimensional schemes.