ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 906-911
Inertial Confinement Fusion Reactor, Reactor Target, and Driver | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40269
Articles are hosted by Taylor and Francis Online.
Gas dynamics in an inertial confinement fusion reactor involves extremely high energy and temperatures. In those temperature range, gaseous radiation can be critical to the dynamics phenomenon. This study presents a method that couples an one-dimensional radiation transfer model with an Eulerian gas dynamics code for HYLIFE-II studies. The results reveals that radiation modifies the shock interaction pattern drastically. Although there are more sophisticated methods of computing one-dimensional radiation transport than the model implemented in current study, the methodology used here are extendible to two-dimensional schemes.