ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Andrew T. Anderson, Michael T. Tobin, Per F. Peterson
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 804-808
National Ignition Facility | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40253
Articles are hosted by Taylor and Francis Online.
The ablation of first surface materials by x rays is a primary threat to the final optics in the NIF target chamber. To meet the operational goals of the facility, the designs of the chamber wall, target holder, and diagnostic surfaces must minimize ablation by x rays, typically by specifying materials that are low-Z, high temperature resistant, and shock resistant. Additionally, the response of the optics to direct target emissions must be understood. This paper describes some experimental and modeling work to develop the validated computer models necessary to quantify the x-ray response of various materials. These codes and further experiments will then confirm the ability of NIF first surface designs to meet functional requirements.