ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
T. R. Boehly, R. S. Craxton, T. H. Hinterman, P. A. Jaanimagi, J. H. Kelly, T. J. Kessler, R. L. Kremens, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 722-729
Future Inertial Confinement Fusion Facility | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40242
Articles are hosted by Taylor and Francis Online.
We report on fusion research at the University of Rochester's Laboratory for Laser Energetics. We describe the configuration of the upgrade to the OMEGA laser system—a 30-kJ, 351-nm, 60-beam, Nd:glass, direct-drive laser-fusion system. The system utilizes rod and disk amplifiers and frequency-tripling to produce intense UV. Target irradiation uniformity is controlled using phase conversion and smoothing by spectral dispersion (SSD). Dual driver lines will feed the propagation of two coaxial beams that have different pulse widths and occupy different portions of the laser aperture. Operation of the laser will begin in November 1994, and the target area will be completed in March 1995.