ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
N. Miya, M. Nemoto, N. Toyoshima
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 507-511
Fusion Material and Plasma-Facing Component | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40207
Articles are hosted by Taylor and Francis Online.
Tritium concentration measurements have been made of the tritium recovery from the JT-60U after high power neutral beam injected discharges. This work has been done to study tritium release characteristics and to assess the tritium inventory in the vacuum vessel. Cleanup operations by hydrogen divertor discharges and helium glow discharge cleanings were performed to deplete the tritium inside the wall prior to in-vessel maintenances. After the beginning of the divertor discharges the tritium release from walls increases gradually. The release rate depends on the surface temperature of divertor plates and it is enhanced by high-power neutral beam heated divertor discharges combined with high-temperature vessel baking. Helium glow discharges, furthermore, give strong release characteristics compared with divertor discharges in spite of their short duration within ∼1 hr. After the deuterium discharges and cleanup operations from July 1991 to July 1994, it is estimated that 70∼ 80% of the total tritium of 39 GBq generated in the plasma is retained inside the graphite first wall.