ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
N. Miya, M. Nemoto, N. Toyoshima
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 507-511
Fusion Material and Plasma-Facing Component | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40207
Articles are hosted by Taylor and Francis Online.
Tritium concentration measurements have been made of the tritium recovery from the JT-60U after high power neutral beam injected discharges. This work has been done to study tritium release characteristics and to assess the tritium inventory in the vacuum vessel. Cleanup operations by hydrogen divertor discharges and helium glow discharge cleanings were performed to deplete the tritium inside the wall prior to in-vessel maintenances. After the beginning of the divertor discharges the tritium release from walls increases gradually. The release rate depends on the surface temperature of divertor plates and it is enhanced by high-power neutral beam heated divertor discharges combined with high-temperature vessel baking. Helium glow discharges, furthermore, give strong release characteristics compared with divertor discharges in spite of their short duration within ∼1 hr. After the deuterium discharges and cleanup operations from July 1991 to July 1994, it is estimated that 70∼ 80% of the total tritium of 39 GBq generated in the plasma is retained inside the graphite first wall.