ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Charles L. Neumeyer
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 366-370
Tokamak Physics Experiment (TPX) | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40187
Articles are hosted by Taylor and Francis Online.
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.