ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
L. Green, M.D. Carelli, F. Stefani, G. Dave Morgan, V. Dennis Lee, R. Mattas
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 300-315
International Thermonuclear Experimental Reactor (ITER) | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40178
Articles are hosted by Taylor and Francis Online.
Changes in ITER requirements and conditions in the Engineering Design Activity (EDA), and the desire to obtain greater operating flexibility, led to a reconsideration of the ITER Conceptual Design Activity (CDA) blanket designs. The current strategy is to follow a two-tiered development approach: The reference design blanket is non-breeding, and satisfies only the basic performance phase (BPP) functional requirements. This blanket would need to be changed out for the extended performance phase (EPP). A lower level development effort is also underway on an tritium-breeding blanket. The decision as to which of the two designs to adopt will be made at the end of a two-year development effort. This paper describes the present candidate blankets and the issues associated with each of them. The reference design is a non-breeding, low temperature, low pressure, water cooled, austenitic stainless steel (316SS) blanket/shield (BS). The first wall (FW), which may be integral with or separate from the BS, is a bonded copper-alloy/SS structure with a beryllium coating. Critical issues here are copper-SS bonding, fabricability, and radiation damage and stress corrosion cracking of the SS. The breeding blanket utilizes vanadium alloy structural material, with lithium as the breeder. The coolants are either lithium (self-cooled) or high pressure helium. The primary issues here are the need to electrically insulate the flow channels, the qualification of vanadium as a structural material, and the fabrication of large vanadium structures.