ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. C. Billone, R. G. Clemmer
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 875-880
Tritium | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40143
Articles are hosted by Taylor and Francis Online.
Lithium aluminate is a candidate tritium-breeding material for fusion reactor blankets. One of the concerns with using LiAlO2 is tritium recovery from this material, particularly at low operating temperatures and high fluences. The data from various tritium release experiments with γ-LiAlO2 and related materials are reviewed and analyzed to determine under what conditions bulk diffusion is the rate-limiting mechanism for tritium transport and what the effective bulk diffusion coefficient should be. Steady-state and transient models based on bulk diffusion are developed and used to interpret the data. Design calculations are then performed with the verified models to determine the steady-state inventory and time to reach equilibrium for a full-scale fusion blanket.