ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
T.F. Yang, R.J. LeClaire, E.S. Bobrov, L. Bromberg, D.R. Cohn, J.E.C. Williams
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 838-842
Magnet Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40137
Articles are hosted by Taylor and Francis Online.
A conceptual design for a demountable TF coil is presented. The work is being pursued as part of an ongoing study of the Resistive Magnet Commercial Tokamak Reactor (RCTR) at MIT. The RCTR is an attractive commercial tokamak option which utilizes resistive magnets characterized by low stresses, low current density and moderate dissipated power. The demountable coil design for RCTR presented here features a relatively simple configuration with a large cross-section available for current transfer in the joint. The concept allows for complete removal of the TF coil with the blanket/first wall in place. Analysis also indicates significant advantages for the overall RCTR concept due to the possibility of placement of the EF and OH coils within the TF bore. These advantages include reduced PF coil size, dissipated power and TF overturning.