ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. Oomura, M. Akiyama, K. Hiya
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 625-629
Blanket and First-Wall Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40109
Articles are hosted by Taylor and Francis Online.
The lifetime evaluation study for a fusion reactor first wall was performed using newly developed one-dimensional analysis code. Since the in-vessel components are exposed to a severe and complex environment, the evaluation of their lifetime is required for the design of fusion reactors. In the present paper, the first wall was assumed to be a flat plate and free to expand but not bend. Linear fracture mechanies was used to investigate the crack growth behavior and parametric surveillance was performed changing the swelling rate, initial crack length and wall loading. It is concluded that 1) the crack growth from the plasma side will limit the lifetime of the first wall, and 2) fracture toughness and initial crack length are the most important limiting factors for the first wall lifetime.