ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
C. B. Reed, B. F. Picologlou, P. V. Dauzvardis
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 257-263
Blanket and First-Wall Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40054
Articles are hosted by Taylor and Francis Online.
The capabilities of a facility, brought into service to collect data on magnetohydrodynamic (MHD) effects pertinent to liquid-metal-cooled fusion reactor blankets, are presented. The facility, designed to extend significantly the existing data base on liquid metal MHD, employs eutectic NaK as the working fluid in a room-temperature closed loop. The instrumentation system is capable of collecting detailed data on pressure, voltage, and velocity distributions at any axial position within the bore of a 2 Tesla conventional electromagnet. The axial distribution of the magnetic field can be uniform or varying with either rapid or slow spatial variations. The magnet gap dimensions, for the uniform field of 2T, are 15.3 cm high × 0.76 m wide × 1.83 m long. NaK was circulated in December 1984 and the magnet was energized in March 1985. Shakedown tests in a round pipe test section are currently underway.