ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
R.R. Peterson, G.A. Moses, R.L. Engelstad, D.L. Henderson, G.L. Kulcinski, E.G. Lovell, M.E. Sawan, I.N. Sviatoslavsky, J.J. Watrous, R.E. Olson, D.L. Cook
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1895-1900
Inertial Confinement Fusion Reactor | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40038
Articles are hosted by Taylor and Francis Online.
The Light Ion Fusion Target Development Facility (TDF) is expected to test approximately ten targets per day having yields in the 50 to 800 MJ range. This large number of high yield micro-explosions creates design problems in the TDF that are not present in PBFA-I and PBFA-II. The TDF would be the first light ion facility where radioactivity in the target debris and induced in the facility itself constitute a biological hazard. It must have a first wall and a target diagnostics package that can survive repeated mechanical and thermal pulses from the target microexplosions. In addition, the repetition rate is much higher than for present day light ion beam drivers. A preliminary conceptual design for the TDF including a reaction chamber, biological shield, target diagnostics package and driver that addresses these and other problems is presented.