ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
D. B. Harris, J. H. Pendergrass
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1868-1871
Inertial Confinement Fusion Reactor | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40033
Articles are hosted by Taylor and Francis Online.
The cost and efficiency of megajoule-class KrF laser single pulse test facilities have been examined. A baseline design is described which illuminates targets with 5 MJ with shaped 10-ns pulses. The system uses 24 main amplifiers and operates with an optics operating fluence of 4.0 J/cm2. This system has 9.0% efficiency and costs $200/joule. Tradeoff studies indicate that large amplifier modules and high fluences lead to the lowest laser system costs, but that only a 20% cost savings can be realized by going to amplifier modules larger than 200 kJ and/or fluences greater than 4 J/cm2. The role of the megajoule-class single-pulse test facility towards inertial fusion commercialization will also be discussed.