ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
A. H. Wahyono, E. G. Lovell
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1856-1860
Inertial Confinement Fusion Reactor | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40031
Articles are hosted by Taylor and Francis Online.
ICF dry wall components of high temperature materials are analyzed for temperature response, thermal stress and mechanical stress from induced vibration. The effects of temperature-dependent conductivity and elasticity are assessed for components subjected to sequential heat flux pulses. Graphite, unirradiated and irradiated silcon carbide are considered. It is shown that since graphite has a negative conductivity change and positive modulus change with increasing temperature, the difference between the variable and constant property solutions for stress can be significant, particularly for smaller pulse widths. Such differences are not as great for silicon carbide due to a decreasing modulus with increasing temperature.