ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
R. D. Woolley, M. Bell, J. Coonrod, P. Efthimion, R. J. Hawryluk, W. Hojsak, R. J. Marsala, D. Mueller, W. Rauch, G. D. Tait, G. Taylor, M. Thompson
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1807-1812
Power Conversion, Instrumentation, and Control | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40023
Articles are hosted by Taylor and Francis Online.
The Tokamak Fusion Test Reactor (TFTR) employs feedback control systems for four plasma parameters, i.e. for plasma current, for plasma major radius, for plasma vertical position, and for plasma density. The plasma current is controlled by adjusting the rate of change of current in the Ohmic Heating (OH) coil system. Plasma current is continuously sensed by a Rogowski coil and its associated electronics; the error between it and a preprogrammed reference plasma current history is operated upon by a “proportional-plus-integral-plus-derivative” (PID) control algorithm and combined with various feedforward terms, to generate compensating commands to the phase-controlled thyristor rectifiers which drive current through the OH coils. The plasma position is controlled by adjusting the currents in Equilibrium Field (EF) and Horizontal Field (HF) coil systems, which respectively determine the vertical and radial external magnetic fields producing J X B forces on the plasma current. The plasma major radius position and vertical position, sensed by “Btheta” and “Brho” magnetic flux pickup coils with their associated electronics, are controlled toward preprogrammed reference histories by allowing PID and feedforward control algorithms to generate commands to the EF and HF coil power supplies. Plasma density is controlled by adjusting the amount of gas injected into the vacuum vessel. Time-varying gains are used to combine line-averaged plasma density measurements from a microwave interferometer plasma diagnostic system with vacuum vessel pressure measurements from ion gauges, with various other measurements, and with preprogrammed reference histories, to determine commands to piezoelectric gas injection valves.