ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Y. Nakagawa, J.E. Meyer
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1783-1788
Power Conversion, Instrumentation, and Control | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40019
Articles are hosted by Taylor and Francis Online.
A pulsed fusion reactor potentially influences many commercial plant design provisions. Provisions related to turbine fatigue performance are among those considered important. They are evaluated by varying several design/operating parameters, separately and in combination, to present tradeoffs among them. These parameters include pulse length and capacity of the thermal storage system. A very simple and fast running temperature/stress representation of the turbine is used for evaluations. Results for wet-steam turbines indicate that requirements for thermal storage are quite large (steam flow between 40 and 80% of full steam flow). Modeling assumptions, design options, and important operating considerations are highlighted.