ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
T. Uckan, N. A. Uckan
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1664-1669
Magnet Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39999
Articles are hosted by Taylor and Francis Online.
There exist two separate and independent magnetic field asymmetries in the ELMO Bumpy Square (EBS). One is associated with the small perturbations in the magnetic field, known as the field errors, caused by coil misalignments during installation, imperfection in coil winding, etc. The second source of asymmetry is the magnetic field ripple in the high-field toroidal solenoids (corners) produced by the finiteness of the number of coils. In general, these two sources of asymmetry introduce enhanced transport losses (in addition to other effects) to the system, although they affect different classes of particles. Toroidally passing (circulating) particles (v‖/v ∼ 1) are influenced by the field errors, whereas trapped particles (v‖/v ∼ 0) in the corners are influenced by the field ripple. In this paper we discuss these two effects separately and calculate the allowable magnitudes of the field error and field ripple in EBS, both for an experimental-size device and for a reactor.