ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
John R. Haines
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1259-1264
Impurity Control and Vacuum Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39940
Articles are hosted by Taylor and Francis Online.
Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) preconceptual design. Efforts concentrated on the pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. Analysis results indicate that the limiter/vacuum pumping system design provides marginally adequate helium ash removal. Difficulties in providing adequate helium ash removal for more compact or higher fusion-power-density devices are addressed. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs.